Physical Sciences & Engineering

USDA: USDA-NIFA-OP-009864 2024 Equipment Grant Program (EGP)

 Limit: 2 // G. Davidowitz (Entomology), F. Duca (Animal & Comparative Biomedical Sciences)

 

 

Two proposals total per eligible institution.

The Equipment Grants Program (EGP) serves to increase access to shared-use special purpose equipment/instruments for fundamental and applied research for use in the food and agricultural sciences programs at institutions of higher education, including State Cooperative Extension Systems. The program seeks to strengthen the quality and expand the scope of fundamental and applied research at eligible institutions, by providing them with opportunities to acquire one shared-use piece of equipment/instrument that supports their research, research training, and extension goals and may be too costly and/or not appropriate for support through other NIFA grant programs. EGP grants are not intended to replace requests for equipment in individual project applications. The program emphasizes shared-use instrumentation that will enhance the capabilities of researchers, educators, and extension specialists both within and outside the proposing organization.

Proposals to the EGP must involve acquisition of a single, well-integrated piece of equipment/instrument. Well-integrated means that the ensemble of equipment that defines the instrument enables specific fundamental or applied research experiments in the food and agricultural sciences, including data science and data systems; separating or removing an element or component of such an integrated instrument would preclude that research from occurring or succeeding. An instrument acquired with support from EGP is expected to be fully operational by the conclusion of the first year of the project.

Internal Deadline
External Deadline
05/03/2024

NSF NSF 24-523: 2024 Expanding Capacity in Quantum Information Science and Engineering (ExpandQISE)

UArizona is ineligible to propose as a lead institution * // Limit: 1 

 

 

The proposal must be submitted by Institutions of Higher Education (IHEs) accredited in, and having a campus located in the U.S., that are not currently classified as a Doctoral University with “Very High Research Activity” (R1 institutions) according to the 2021 Carnegie Classification update: https://carnegieclassifications.iu.edu/.

These include two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the U.S., acting on behalf of their faculty members. Eligibility is based on the classification on the date of proposal submission deadline.

All U.S.-based accredited Institutions of Higher Education, including R1 institutions, are eligible to be named a subawardee (partner) institutions. Funding of partnering institutions must be requested via subawards; separately submitted collaborative proposals are not permitted. The total amount of funding to subawardee institutions is limited to no more than 30% of the total award amount.

Funding Type
Internal Deadline
External Deadline
03/08/2024
Solicitation Type

DOE DE-FOA-0003231: 2024 Bioimaging Research and Approaches for the Bioeconomy & The Environment

Limit: 1 // PI: D. Soh (Wyant College of Optical Sciences)

 

The DOE SC program in Biological and Environmental Research (BER), through its Bioimaging Research effort, hereby announces its interest in receiving innovative applications to advance fundamental research or use-inspired technologies of new bioimaging or sensing approaches. Fundamental research to enhance spatial and temporal resolution, measurement speed, long-term sample stability, selectivity, sensitivity, or chemical specificity of bioimaging technologies are desirable. Proposed research should demonstrate a comparative advantage over state-of-the-art techniques or identify biological characteristics that cannot currently be measured. Quantum-enabled technologies are allowed but not required in this FOA. Applications can be submitted under one of two subtopics: 1) Novel research concepts proceeding through technical validation that are not required to evaluate new biological hypotheses; 2) Innovative experimental prototype research proceeding through hypothesis-driven biological experimentation; proposals submitted under this subtopic are encouraged to coordinate with biological collaborators if domain expertise is not in-house. All applications are expected to describe how, if realized, they would advance biological knowledge of plant and microbial systems relevant to bioeconomy or environmental research in fields of study supported by BER.

Program Objective

BER is soliciting applications in the following subtopic areas: 1) fundamental imaging or sensing research from concept to validation or 2) evaluation of biological hypotheses or questions with feasible, use-inspired prototypes. Under subtopic 1) applications could evaluate, untested concepts, and theoretical models, develop novel experimental prototypes and validate measurement accuracy against known technical or biological validation standards. Under subtopic 2) research of experimental prototypes of instruments and methods that will include demonstration of feasibility leading to hypothesis-driven biological experimentation to demonstrate value to the user community. This FOA does not solicit late-stage optimization after initial prototype research, or engineering development of resources, or equipment.

Subtopic 1: Concept to Validation

Projects can begin at the conceptual (pre-experimental) stage and move through validation by comparing technical performance and biological measurements against accepted standards. This stage is too early to investigate new biological questions until proven accurate and reproducible. The intent of the first subtopic is to include applications that might not yet have experimental demonstration of feasibility but hold promise of significant impact if successful. These high-risk high-reward applications might reside completely within a scientific and technical field of research and are not required to demonstrate novel biological utility. However, validation against already characterized synthetic or biological samples in BER-supported bioenergy and environmental research should be included. Measurement should be compared to known or “gold-standard” targets measured by competing methods.

Demonstration in living systems is not required, but systems must have future impact on in situ imaging, measuring, or modeling for plant- and microbial-based bioenergy research. Proposed projects should hold promise for significant advances in imaging or sensing and must include plans to manage the high risk inherent in testing novel concepts and techniques. These “high-risk/high reward” projects might have no preliminary data to support the concept making feasibility challenging to evaluate for scientific merit. However, reviewers will be instructed to evaluate merit based on the future significance of the potential for success and the risk-reward balance when evaluating the applications for consideration of funding. In all applications it is expected that the future significance for biological investigations in fields of study supported by BER will be described.

Subtopic 2: Prototypes for Biological Hypothesis Research

Projects can begin with use-inspired experimental prototypes that will be tested for technical and biological validation but cannot include development to field-ready demonstration prototypes. In addition to technical research and testing, projects must include research to evaluate an untested biological question or hypothesis. Optionally, collaboration with external biological investigators can be included towards evaluating biological hypotheses. The intent of the second subtopic is for technically feasible research that can be tested to demonstrate utility for biological users. Public dissemination of research results can provide demonstration of value to the BER research community and generate interest in adoption of new technologies.

Demonstration in living systems is not required, but technical systems must have future impact on in situ imaging, measuring, or modeling of plant- and microbial-based bioeconomy or environmental research. Applications should demonstrate an advantage over current techniques or measure new biological characteristics that could not be accessed with existing approaches. Further, evaluating untested biological hypotheses is required to demonstrate project significance to bioenergy, bioeconomy, or environmental research. Multidisciplinary teams of physical and chemical scientists, plant biologists, microbiologists, and engineers are encouraged to develop high impact imaging and sensing approaches that are inspired by well-defined biological hypotheses. Optional funding for collaboration with investigators outside of the PIs laboratory can be requested in the application for out years two and three. In all applications it is expected that the future significance for biological investigations in fields of study supported by BER will be described.

Funding Type
Internal Deadline
External Deadline
01/09/2024

NSF 24-512: 2024 Partnerships for Research and Education in Materials (PREM)

No Applicants  // Limit: 1 // Tickets Available: 1 

 

Limit on Number of Proposals per Organization: 1 per lead institution.

 

The National Science Foundation's vision of “a Nation that leads the world in science and engineering research and innovation, to the benefit of all, without barriers to participation” encompasses core values of research excellence, inclusion, and collaboration, as described in NSF's Strategic Plan. The NSF Division of Materials Research (DMR) supports a broad interdisciplinary research community, which encompasses materials science, physics, chemistry, mathematical sciences, and engineering disciplines, providing a unique opportunity to broadly promote the NSF vision and core values, especially inclusion and collaboration.

 

The DMR Partnerships for Research and Education in Materials Research (PREM) program aims to enable, build, and grow formal partnerships between minority-serving institutions and DMR-supported centers and/or facilities through materializing the PREM pathway. The PREM pathway aims at broadening participation through enhanced recruitment, retention, and degree attainment by members of those groups most historically underrepresented in materials research. As an essential ingredient for its success, PREM supports excellent research and education endeavors that nurture and strengthen such partnerships and advance the materials research field.

Information about current PREMs and a description of the PREM framework can be found at https://prem-dmr.org/.

The PREM program activity is expected to enhance both the quantity and quality of materials research and education opportunities for students and faculty members at minority-serving institutions, and to demonstrably lead to broadened participation in materials research. These opportunities result from long-term, multi-investigator, collaborative research and education partnerships that define a framework wherein a supportive and stable PREM pathway for promoting inclusiveness in STEM is designed and built. In this context, the framework includes the partnership, the pathway (i.e., the recruitment/retention/degree attainment paradigm), as well as essential research and education elements that collectively propel the participants’ progression along the pathway. Additionally, the PREM activity may also contribute to and strengthen broadening participation efforts at partnering institutions (i.e., the DMR-supported centers and facilities).

A PREM typically encompasses research thrust(s) that involve several faculty members addressing materials research topic(s). Sustained support is developed through a collaborative effort by the participants from both partnering institutions that is based on common intellectual interests (either pre-existing or newly identified) and complementary backgrounds, skills, and knowledge. Ideally, a PREM proposal defines a vision for the partnership that simultaneously promotes inclusiveness and research excellence; the proposed research should be aligned with research supported by DMR. The role of each institutional partner should be explicit, and project goals to achieve the vision should be clearly defined and addressed. Importantly, anticipated challenges and expected outcomes towards increasing participation of groups underrepresented in STEM and research output must be identified and addressed. Plans for student/faculty reciprocal exchange between partnering institutions are required. Project assessment and evaluation plans are required and are designed to emphasize an increase in the quality and quantity of research, education, and broadening participation endeavors measured relative to the beginning of the award. Successful PREMs can be developed regardless of the starting research and capacity levels at the lead institution.

Efforts for broadening participation in materials research rely on creating research and education partnerships that promote inclusive institutional cultures. An effective partnership defines a framework that contains the PREM pathway towards broadening participation, as well as research and education resources. Through effective utilization of research and education resources and depending on the level of support that the lead institution can provide to enable research efforts, a variety of strategies may be developed towards a progressive materialization of the recruitment/retention/degree attainment components of the PREM pathway. Examples include but are not limited to workshops, technical meetings, technical courses, curricular development, summer schools, outreach towards improving recruitment, student mentoring activities, and overall opportunities in science learning and training.

Starting research and capacity levels will position the PREM partnership at a specific location within the PREM pathway, which can range from pre-recruitment to pre-degree attainment stages. It is expected that eventually, and as a result of the developed strategies and proposed research and education elements, the partnership on the PREM pathway will evolve and mature, leading to an increased enrollment of underrepresented students in graduate school, and eventually, to a diverse materials research workforce at all levels (i.e., student, postdoctoral, faculty, STEM career). As examples, to date, successful PREMs have devised innovative strategies around recruitment, retention, and degree attainment that have successfully promoted enrollment of minority students in STEM Ph.D. programs in both minority- and non-minority-serving institutions throughout the U.S. Other successful PREMs have prepared undergraduates at the lead institution for recruitment by the partner institution, which provides another example of a fully materialized PREM pathway that benefits both institutions by simultaneously broadening participation in STEM areas as well as increasing research output.

It should be emphasized that the partnership is expected to develop capacity in at least one segment of the PREM pathway within the duration of the award, commensurate with the partnership’s starting research and capacity levels. The vision for the partnership, however, must include a deliberate effort that aims at the full completion of the pathway, possibly in subsequent awards.

Successful PREMs are expected to:

  • Engage in compelling scientific materials research: research thrust(s) must have a well-integrated research program with compelling intellectual merit and broader impacts. Each thrust must demonstrate clear benefits from a collaborative approach, which in turn defines the research and education partnership.
  • Promote inclusion of participants from underrepresented groups in the PREM pathway covering all or a segment of the recruitment/retention/degree-attaining sequence through opportunities in science learning and training. These opportunities are the result of applying the elements from the PREM framework in the PREM pathway. Challenges and progress throughout the stages of recruitment, retention, and degree attainment are addressed, as appropriate.
  • Propose either existing or newly designed elements in the framework that will successfully promote broadening participation efforts and research output in materials research at the partnering institutions. The proposed elements must clearly define purpose, challenges, and expected outcomes towards broadening participation and increasing research output.
  • Provide metrics: PREM partners propose specific metrics with which the partnership will be evaluated. The metrics will emphasize increase in both quality and quantity of research and broadening participation measured relative to the beginning of the award in each partnership. Successful PREMs can be developed regardless of differences in starting research and capacity levels at the lead institution.
  • Specify gains: Each partner must specify anticipated gains both in terms of broadening participation and research output. Using the metrics identified in the proposal, gains will be evaluated and assessed within the context of the segment in the PREM pathway that a specific partnership is targeting.
  • Establish reciprocity: Reciprocal faculty and student exchanges are a core component of the partnership. Scientific and educational collaboration among all partners with measurable benefits to all are key attributes of a successful PREM. 

A PREM may address any area of research supported by the NSF Division of Materials Research which includes 8 programs, known as Topical Materials Research Programs (TMRP): Biomaterials (BMAT), Ceramics (CER), Condensed Matter Physics (CMP), Condensed Matter and Materials Theory (CMMT), Electronic and Photonic Materials (EPM), Metals and Metallic Nanostructures (MMN), Polymers (POL), and Solid State and Materials Chemistry (SSMC). For a detailed description of the research supported by the 8 core programs visit: https://www.nsf.gov/materials.

Furthermore, in alignment with NSF’s interest in strengthening Emerging Industries, proposals addressing fundamental materials research in the following areas are of interest to DMR:

  • Artificial Intelligence (AI): Research in this area could include the utilization of machine learning, deep learning, computer vision, and other emerging data-centric approaches to address complex problems within the realm of materials science. Of particular interest are applications of AI to traditional materials science issues, such as those found in ceramics, metals, metallic alloys, and other materials categories. The use of AI and machine learning to enable advanced manufacturing, and using predictive design to program the composition, structure, and/or function of materials are also of interest.
  • Biotechnology and Synthetic Biology: Research endeavors in this area could address materials-related obstacles hindering the integration of synthetic biology techniques into the development of next-generation materials and living or active materials relevant to biotechnology. Fundamental materials research at the intersection of synthetic biology and abiotic materials and technologies, as well as the crossroads of engineering biology and materials science is of particular interest. This may encompass the development of materials, living materials, active materials, and material systems with the potential to revolutionize food production and agriculture, human well-being and biomedical applications, environment, energy, information storage, and processing, as well as the creation of pluripotent and autonomous materials capable of sensing and adapting to their environment. The focus on new approaches to manufacture at scale novel materials that are safer and more sustainable is encouraged (see https://roadmap.ebrc.org/2021-roadmap-materials/ for more information.)
  • Advanced Manufacturing: Research in this area could explore novel strategies for creating composite materials that span different materials classes, including the fusion of digital- and self-assembly techniques. Advancements in modeling and monitoring processing with a focus on in situ characterization are of interest. Additionally, developing ability to print functionality, such as spatially resolved mechanical and chemical properties alongside structures are also of interest. Furthermore, hierarchical materials, achieved through a combination of self-assembly and top-down additive manufacturing, as well as the integration of manufacturing approaches for heterogeneous materials (soft and hard), and precision synthesis and characterization of macromolecular and bespoke polymer materials are also areas of interest.
Funding Type
Internal Deadline
External Deadline
03/12/2024
Solicitation Type

Pew Charitable Trusts: 2025 Pew Biomedical Scholars

 Limit: 1 // H. Ding (Translational Pharmacogenomics)

 

One nomination will be invited from each of the participating institutions.

 

 

The Pew Scholars Program in the Biomedical Sciences provides funding to young investigators of outstanding promise in science relevant to the advancement of human health. The program makes grants to selected academic institutions to support the independent research of outstanding individuals who are in their first few years of their appointment at the assistant professor level. The current grant level is $300,000; $75,000 per year for a four-year period.

Candidates must hold a doctorate in biomedical sciences, medicine, or a related field, including engineering or the physical sciences.

Based on their performance during their education and training, candidates should demonstrate outstanding promise as contributors in science relevant to human health. This program does not fund clinical trials research. Strong proposals will incorporate particularly creative and pioneering approaches to basic, translational, and applied biomedical research. Candidates whose work is based on biomedical principles but who bring in concepts and theories from more diverse fields are encouraged to apply.

 

Candidates must meet all of the following eligibility requirements:

  • Hold a doctorate in biomedical sciences, medicine, or a related field, including engineering or the physical sciences.
  • As of Sept. 7, 2024, run an independent lab and hold a full-time appointment at the rank of assistant professor.
  • Must not have been appointed as an assistant professor at any institution prior to June 12, 2020, whether or not such an appointment was on a tenure track. Time spent in clinical internships, residencies, in work toward board certification, or on parental leave does not count as part of this four-year limit. Candidates who need an exception on the four-year limit should contact Pew’s program office to ensure that application reviewers are aware an exception has been given.
    • Please note that the eligibility criteria above have been temporarily expanded to account for COVID-related lab shutdowns. Please direct any questions to the program office at scholarsapp@pewtrusts.org.
  • May apply to the program a maximum of two times. 
  • If applicants have appointments at more than one eligible nominating institution or affiliate, they may not reapply in a subsequent year from a different nominating entity.
  • May not be nominated for the Pew Scholars Program and the Pew-Stewart Scholars Program for Cancer Research in the same year.
Funding Type
Internal Deadline
External Deadline
05/15/2024 ( Nomination) - 09/07/2024 ( Proposal)
Solicitation Type

Foundation for Food and Agriculture Research (FFAR) 2024 New Innovator in Food and Agriculture Research Award

 Limit: 1 // R. Schomer (School of Plant Sciences)

 

Institutions may submit one nominee to the New Innovator Award program.

*Deadline note: This selection process is running with an anticipated deadline. We will inform all applicants of relevant updates in the guidelines, submission deadlines, and eligibility as soon as more information becomes available.

 

The Foundation for Food and Agriculture Research (FFAR)  New Innovator Program,  will allow investigators to explore new avenues of inquiry that arise during their research. Therefore, FFAR is interested in the program of research to be explored and its impact as opposed to a list of very specific aims. The review process emphasizes the individual’s creativity, the innovativeness of the research approaches, and the potential of the program; collaborations are encouraged. While this award is made to an outstanding early career investigator, applicants should include information regarding any essential collaborators and include letters of support from those collaborators. Each applicant can receive from FFAR up to $150,000 per year for a maximum of three years totaling $450,000 investment.

Research programs should fall within one of FFAR’s Challenge Areas

  • Advanced Animal Systems
  • Health-Agriculture Nexus
  • Next Generation Crops
  • Soil Health
  • Sustainable Water Management
  • Urban Food Systems
  •  Climate change  
Funding Type
Internal Deadline
External Deadline
02/22/2024 - Nomination / 05/06/2024*

Oak Ridge Associated Universities (ORAU) 2024 Innovation Partnerships Program (formerly Events Sponsorship Grant Program)

Limit: 2 // Tickets Available: 1

 

 H-J. Kim (Civil Engineering)

 

Institutions can receive only two awards each year and can submit a limit of two applications per year.
*The ORAU Innovation Partnerships Grant Program is a single fiscal year award for events held between September 1, 2023 and September 30, 2024.

 

Event or conference sponsorship is often beneficial to the Oak Ridge Associated Universities (ORAU) Council of Sponsoring Institution Members, whether as a means of fostering collaboration among Council members, gaining new and important information for a proposal or business plan, and more. Up to $4,000 may be requested to support an in-person or virtual event that involves participants from more than one ORAU member institution, including students. Innovation Partnership applications should focus on focused workshops/conferences that highlight your university’s strategic STEM research and education growth areas, and where collaborations with other member universities would add value. We are specifically interested in events that can bring more thought leadership in building a national strategy for STEM education and workforce development. Member universities are encouraged to collaborate around this topic in anticipation of federal funding initiatives. 

 

FY 2024 Innovation Partnerships Grant Focus Areas:

  • Climate and Environment - sustainability, environmental justice, clean energy, resilience to climate hazards, emerging technologies, measurement and impact assessment, diversity and inclusion, policy, and data science and analytics
  • Health Equity - telemedicine, telehealth, health literacy, health communication, behavioral and mental health, health disparities, diversity and inclusion, policy, and data science and analytics
  • Future of the STEM Workforce - new ways of teaching and learning (K-16), transformative workforce capacity building and mentoring, diversity and inclusion, policy, data science, machine learning, and artificial intelligence

NSF 24-597: 2024 National Science Foundation Research Traineeship Program (NRT) - Track 1

UPDATED from NSF 21-536 to NSF 24-597 to reflect the updated solicitation posted August 16, 2024

Submit ticket request  // Limit: 2 // Tickets Available: 1
Track 1 ONLY

H. Kim (Civil and Architectural Engineering and Mechanics)

 

Proposals may be submitted under two tracks (i.e., Track 1 and Track 2). All projects should include a focus on STEM graduate students in research-based PhD and/or master's degree programs. Track 1 proposals may request a total budget up to $3 million for projects up to five years in duration; Track 2 proposals may request a total budget up to $2 million for projects up to five years in duration; NSF requires that Track 2 proposals focus on programs from institutions not classified as Doctoral Universities: Very High Research Activity (R1). U of A is not eligible for Track 2.

The NSF Research Traineeship (NRT) program seeks proposals that explore ways for graduate students in research-based master's and doctoral degree programs to develop the skills, knowledge, and competencies needed to pursue a range of STEM careers. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas, through a comprehensive traineeship model that is innovative, evidence-based, and aligned with changing workforce and research needs.

The NRT Program accepts proposals in any interdisciplinary or convergent research theme of national importance and encourages specific priority research areas that change periodically. All interdisciplinary or convergent research themes should align with NSF or other national STEM research priority areas and have high potential to develop novel, innovative practices in graduate education. Proposers should describe the importance of the NRT project's thematic focus to the Nation and the particular need to train students for a variety of careers in that thematic area.

G. Harold & Leila Y. Mathers Foundation: 2024 Basic & Translational Research Grants - Spring Cycle

 Limit: 4 //

M. Verhougstraete (Community, Environment & Policy)
J. Schroeder (Molecular and Cellular Biology)
H. Cai (Neuroscience)
J. Bibb (Translational Neurosciences)
 

The mission of The G. Harold and Leila Y. Mathers Foundation is to advance knowledge in the life sciences by sponsoring scientific research that will benefit mankind. The foundation’s grants program seeks to support basic science, ideally with potential translational applications. Immunology, microbiome, genomics, structural biology, cellular physiology, neuroscience, etc., are some noteworthy examples of current research support. 

For many years the Foundation has enjoyed special recognition in the research community for supporting “basic” scientific research, realizing that true transformative breakthroughs usually occur after a thorough understanding of the fundamental mechanisms underlying natural phenomena. More recently, and with the advent of newer investigative methodologies, technology, and tools, the Foundation now embraces innovative translational research proposals.

The grant duration must be three years. The budget should be reasonable based on the aims of the project. Indirect costs may not exceed 10%. Preliminary Budgets are required during the LOI phase. A detailed budget justification is not required until the proposal phase.  The Foundation’s grant award is not intended to be utilized for purchasing capital equipment (“bricks-and-mortar”) for the lab and is intended only to support the actual investigation. The Foundation assumes and expects that capital equipment must be provided by the research institution or university.
 

Application Guidance:

  • Grant budgets cannot exceed $600-750K 
  • The Foundation primarily supports basic science, ideally with potential translational applications.
  • Immunology, microbiome, genomics, structural biology, cellular physiology, neuroscience, etc., are some noteworthy examples of current research support.
  • Covid-19-related research projects (aims or sub-aims) will not be considered for support.
  • Medical imaging technology-related projects and/or electrical engineering technology development projects will not be considered for support.
  • Plant Biology Research, Oceanography, Space Exploration. and Global warming-related research will not be considered for support.
  • As technology continues to advance, it is apparent that investigations in the area of basic science and translational research may become more and more reliant on collaborative, interdisciplinary projects. It is important to note that any interdisciplinary project proposals may require additional information regarding the collaborator(s)’ achievements and relevant expertise.
  • Feedback for declined LOI Requests will not be provided; LOIs or Formal Proposals that have been declined should not be resubmitted at a later date for consideration.
  • Renewal applications for the same or related research will not be accorded priority consideration. It is strongly advised that any re-application for grant renewal consider a new direction based on prior research or emphasize some new potential translational aspects and not merely an extension of previously funded research.
  • Requests for funding previously federally supported research and/or applications pending federal approval will not be accorded priority consideration.
  • Requests for support of clinical trials or drug discovery will not be approved. The Foundation will not support projects which we consider pre-clinical drug development.
Funding Type
Internal Deadline
External Deadline
03/08/20234- Required registration

DOE DE-FOA-0003211: 2023 Collaborative Research in Magnetic Fusion Energy Sciences on Long-Pulse International Stellarator Facilities

No Applicants  // Limit: 2 // Tickets Available: 2 

Applicant institutions are limited to no more than two pre-applications or applications as the lead institution for each PI at the applicant institution.

 

The DOE SC program in Fusion Energy Sciences (FES) hereby announces its interest in receiving applications to carry out experimental research in magnetic fusion energy sciences on long-pulse overseas stellarator facilities, namely, Wendelstein 7-X (W7-X – Germany) and the Large Helical Device (LHD – Japan). The research should be related to the planning, execution, and analysis of experiments concerning the topical areas described below. The FES Burning Plasma Science: Long Pulse portfolio supports U.S. researchers who work in collaboration with foreign scientists to explore critical science and technology issues at the frontiers of magnetic fusion research. These collaborations take advantage of the unique capabilities of the most advanced overseas research facilities.

Funding Type
Internal Deadline
External Deadline
12/16/2023 - Pre-application